Structure and stability of kaolinite/TiO2 nanocomposite: DFT and MM computations.

نویسندگان

  • Jonáš Tokarský
  • Pavla Capková
  • Jaroslav V Burda
چکیده

The adhesion of TiO(2) (anatase structure) nanoparticles to kaolinite substrate was investigated using molecular modeling. Universal force field computation, density function theory computation, and a combination of both two approaches were used. This study enabled the adhesion energy for the TiO(2)/kaolinite nanocomposite to be estimated, and revealed the preferred orientation of the TiO(2) nanoparticles on the kaolinite substrate. The results of all three levels of computation were compared in order to show that the accuracy of universal force field computations is sufficient in this context. The role of nanoparticle size and the importance of the nanoparticle-substrate bonding contribution are presented here and discussed. A comparison of the molecular modeling results with scanning electron microscopy observations showed that the results of the modeling were consistent with the experimental data, and that this approach can be used to help characterize nanocomposites of the nanoparticle/phyllosilicate substrate type.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Characterization of Polypyrrole-hydroxyethylcellulose/TiO2 Nanocomposite: Thermal Properties and AFM Analysis

Polypyrrole–hydroxyethylcellulose/TitaniumDioxide (PPy-HEC/TiO2) nanocomposite was synthesized via in situ chemical oxidative polymerization method at room temperature in water and water/ethyl acetate solution in the presence of ferric chloride (FeCl3). The effect of TiO2 nanoparticles and HEC on the characteristics of products such as thermal stability and morphology was investigated. The fabr...

متن کامل

DFT Study on Oxygen-Vacancy Stability in Rutile/Anatase TiO2: Effect of Cationic Substitutions

In this study, a full-potential density functional theory was used to investigate the effects of Ti substitution by different cations. In both rutile and anatase, Ti atom was replaced by Ce, Au, Sn, Ag, Mo, Nb, Zr, and Y. Phase stability, electronic structure and formation energy of oxygen vacancy were compared for rutile and anatase. The results indicated that substitution of Ce and Zr increas...

متن کامل

TiO2/Graphene oxide nanocomposite as an ideal NO gas sensor: A density functional theory study

We performed a density functional theory investigation on the structural and electronic properties of pristine and nitrogen-doped TiO2/Graphene oxide nanocomposites as the adsorbents for the removal of toxic NO molecules in the environment. We presented the most stable adsorption configurations and examined the interaction of NO molecule with these doped and undoped nanocomposites. It turns out...

متن کامل

TiO2/Graphene oxide nanocomposite as an ideal NO gas sensor: A density functional theory study

We performed a density functional theory investigation on the structural and electronic properties of pristine and nitrogen-doped TiO2/Graphene oxide nanocomposites as the adsorbents for the removal of toxic NO molecules in the environment. We presented the most stable adsorption configurations and examined the interaction of NO molecule with these doped and undoped nanocomposites. It turns out...

متن کامل

Investigation of Chemical Properties in Fullerene Derivatives of Atenolol Drug: A DFT Study

In this study, the drug atenolol on C60 fullerene were the drug and its derivatives were optimized fullerene. NBO and NMR for complex computations required in the HF/6-31G (d) and B3LYP/6-31G (d) quantum chemistry method was used. Mechanical quantum calculations in theory level of B3LYP/6-31G were performed on structure of atenolol and nano fullerene atenolol with different positions...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of molecular modeling

دوره 18 6  شماره 

صفحات  -

تاریخ انتشار 2012